Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Behav ; 262: 114105, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736416

RESUMO

Hippocampal dysfunction is associated with major depressive disorder, a serious mental illness characterized by not only depressed mood but also appetite disturbance and dysregulated body weight. However, the underlying mechanisms by which hippocampal circuits regulate metabolic homeostasis remain incompletely understood. Here we show that collateralizing melanocortin 4 receptor (MC4R) circuits in the ventral subiculum (vSUB), one of the major output structures of the hippocampal formation, affect food motivation and energy balance. Viral-mediated cell type- and projection-specific input-output circuit mapping revealed that the nucleus accumbens shell (NAcSh)-projecting vSUBMC4R+ neurons send extensive collateral projections of to various hypothalamic nuclei known to be important for energy balance, including the arcuate, ventromedial and dorsomedial nuclei, and receive monosynaptic inputs mainly from the ventral CA1 and the anterior paraventricular nucleus of thalamus. Chemogenetic activation of NAcSh-projecting vSUBMC4R+neurons lead to increase in motivation to obtain palatable food without noticeable effect on homeostatic feeding. Viral-mediated restoration of MC4R signaling in the vSUB partially restores obesity in MC4R-null mice without affecting anxiety- and depression-like behaviors. Collectively, these results delineate vSUBMC4R+ circuits to the unprecedented level of precision and identify the vSUBMC4R signaling as a novel regulator of food reward and energy balance.


Assuntos
Transtorno Depressivo Maior , Motivação , Camundongos , Animais , Receptor Tipo 4 de Melanocortina/metabolismo , Transtorno Depressivo Maior/metabolismo , Hipocampo/metabolismo , Núcleo Accumbens/metabolismo , Camundongos Knockout
2.
Endocrinology ; 163(12)2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36181426

RESUMO

Estrogen receptor alpha (ERα)-mediated estrogen signaling plays a pivotal role in both reproductive and nonreproductive functions. Transcriptional regulation of the ERα gene is highly complex, with multiple transcript variants being differentially produced across the tissues. However, tissue-specific variation and physiological specificity of the ERα variants are not yet fully understood. In an attempt to generate a Cre-dependently restorable ERα-null mouse for functional genetic studies, we unexpectedly produced ERα hypomorphic mice with biased downregulation of a previously unappreciated long ERα isoform that is enriched in the female reproductive organs (uterus and ovaries) and the pituitary but minimally expressed in the brain. Female homozygous mutant mice were capable of pregnancy but displayed irregular estrus cycle and rarely kept newborn pups alive. No significant morphological and pathological changes in reproductive system or disruption of body weight homeostasis were seen in female homozygous mutant mice. Collectively, our results define a tissue-specific enriched long ERα isoform and its preferential role in female reproductive function rather than body weight homeostasis.


Assuntos
Receptor alfa de Estrogênio , Estrogênios , Fenômenos Reprodutivos Fisiológicos , Animais , Feminino , Camundongos , Peso Corporal , Receptor alfa de Estrogênio/genética , Camundongos Knockout , Isoformas de Proteínas , Fenômenos Reprodutivos Fisiológicos/genética
3.
Mol Metab ; 66: 101622, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36307046

RESUMO

OBJECTIVE: RGS2 is a GTPase activating protein that modulates GPCR-Gα signaling and mice lacking RGS2 globally exhibit metabolic alterations. While RGS2 is known to be broadly expressed throughout the body including the brain, the relative contribution of brain RGS2 to metabolic homeostasis remains unknown. The purpose of this study was to characterize RGS2 expression in the paraventricular nucleus of hypothalamus (PVN) and test its role in metabolic homeostasis. METHODS: We used a combination of RNAscope in situ hybridization (ISH), immunohistochemistry, and bioinformatic analyses to characterize the pattern of Rgs2 expression in the PVN. We then created mice lacking Rgs2 either prenatally or postnatally in the PVN and evaluated their metabolic consequences. RESULTS: RNAscope ISH analysis revealed a broad but regionally enriched Rgs2 mRNA expression throughout the mouse brain, with the highest expression being observed in the PVN along with several other brain regions, such as the arcuate nucleus of hypothalamus and the dorsal raphe nucleus. Within the PVN, we found that Rgs2 is specifically enriched in CRH+ endocrine neurons and is further increased by calorie restriction. Functionally, although Sim1-Cre-mediated prenatal deletion of Rgs2 in PVN neurons had no major effects on metabolic homeostasis, AAV-mediated adult deletion of Rgs2 in the PVN led to significantly increased food intake, body weight (both fat and fat-free masses), body length, and blood glucose levels in both male and female mice. Strikingly, we found that prolonged postnatal loss of Rgs2 leads to neuronal cell death in the PVN, while rapid body weight gain in the early phase of viral-mediated PVN Rgs2 deletion is independent of PVN neuronal loss. CONCLUSIONS: Our results provide the first evidence to show that PVN Rgs2 expression is not only sensitive to metabolic challenge but also critically required for PVN endocrine neurons to function and maintain metabolic homeostasis.


Assuntos
Metabolismo Energético , Núcleo Hipotalâmico Paraventricular , Camundongos , Animais , Masculino , Feminino , Núcleo Hipotalâmico Paraventricular/metabolismo , Metabolismo Energético/fisiologia , Obesidade/metabolismo , Homeostase , Peso Corporal
4.
Mol Metab ; 55: 101401, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34823066

RESUMO

OBJECTIVE: The paraventricular nucleus of hypothalamus (PVN), an integrative center in the brain, orchestrates a wide range of physiological and behavioral responses. While the PVN melanocortin 4 receptor (MC4R) signaling (PVNMC4R+) is involved in feeding regulation, the neuroanatomical organization of PVNMC4R+ connectivity and its role in other physiological regulations are incompletely understood. Here we aimed to better characterize the input-output organization of PVNMC4R+ neurons and test their physiological functions beyond feeding. METHODS: Using a combination of viral tools, we mapped PVNMC4R+ circuits and tested the effects of chemogenetic activation of PVNMC4R+ neurons on thermoregulation, cardiovascular control, and other behavioral responses beyond feeding. RESULTS: We found that PVNMC4R+ neurons innervate many different brain regions that are known to be important not only for feeding but also for neuroendocrine and autonomic control of thermoregulation and cardiovascular function, including but not limited to the preoptic area, median eminence, parabrachial nucleus, pre-locus coeruleus, nucleus of solitary tract, ventrolateral medulla, and thoracic spinal cord. Contrary to these broad efferent projections, PVNMC4R+ neurons receive monosynaptic inputs mainly from other hypothalamic nuclei (preoptic area, arcuate and dorsomedial hypothalamic nuclei, supraoptic nucleus, and premammillary nucleus), the circumventricular organs (subfornical organ and vascular organ of lamina terminalis), the bed nucleus of stria terminalis, and the parabrachial nucleus. Consistent with their broad efferent projections, chemogenetic activation of PVNMC4R+ neurons not only suppressed feeding but also led to an apparent increase in heart rate, blood pressure, and brown adipose tissue temperature. These physiological changes accompanied acute transient hyperactivity followed by hypoactivity and resting-like behavior. CONCLUSIONS: Our results elucidate the neuroanatomical organization of PVNMC4R+ circuits and shed new light on the roles of PVNMC4R+ pathways in autonomic control of thermoregulation, cardiovascular function, and biphasic behavioral activation.


Assuntos
Núcleo Hipotalâmico Paraventricular/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Regulação da Temperatura Corporal/fisiologia , Encéfalo/metabolismo , Núcleo Hipotalâmico Dorsomedial/metabolismo , Técnicas de Introdução de Genes/métodos , Hipotálamo/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Receptor Tipo 4 de Melanocortina/fisiologia , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...